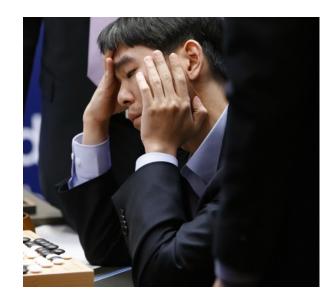
DQNViz: A Visual Analytics Approach to **Understand Deep Q-Networks**

Junpeng Wang¹, Liang Gou², Han-Wei Shen¹, Hao Yang²

- 1. The Ohio State University
- 2. Visa Research

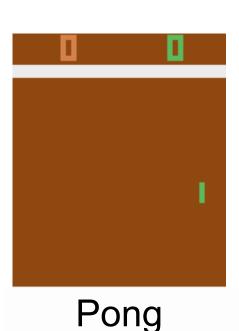
Introduction

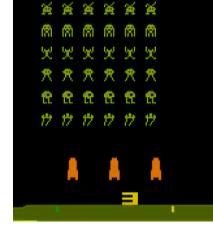
Deep Reinforcement Learning + AlphaGo



Introduction

- Deep Reinforcement Learning + AlphaGo
- Deep Q Networks + Atari Games



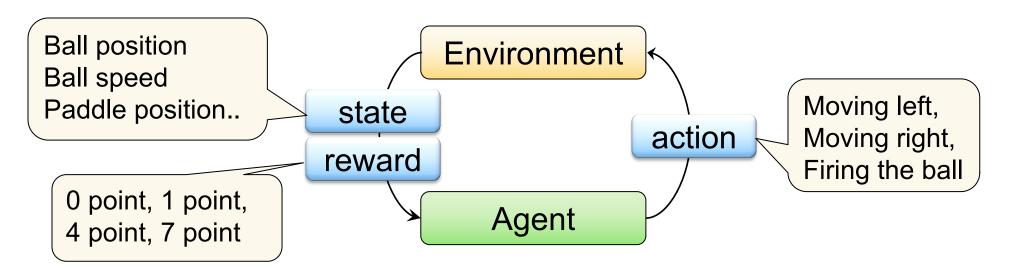


0770

Space-Invader

Introduction

- Deep Reinforcement Learning + AlphaGo
- Deep Q Networks + Atari Games



 $a_1, s_1, r_1, a_2, s_2, r_2, \dots a_n, s_n, r_n$

Background: Q-Learning with Bellman Equation

 $s_0, a_0, r_1, s_1, a_1, r_2, \dots, r_n, s_n$ Data:

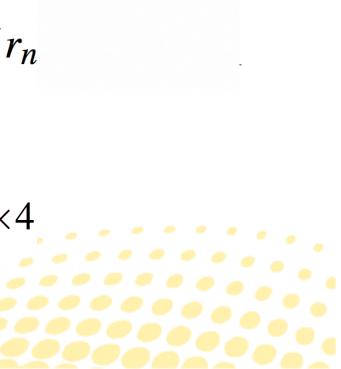
Total reward: $R=r_1+r_2+\ldots+r_n$

Future reward: $R_t = r_t + r_{t+1} + \dots + r_n$

Discounted Future reward: $R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^{n-t} r_n$

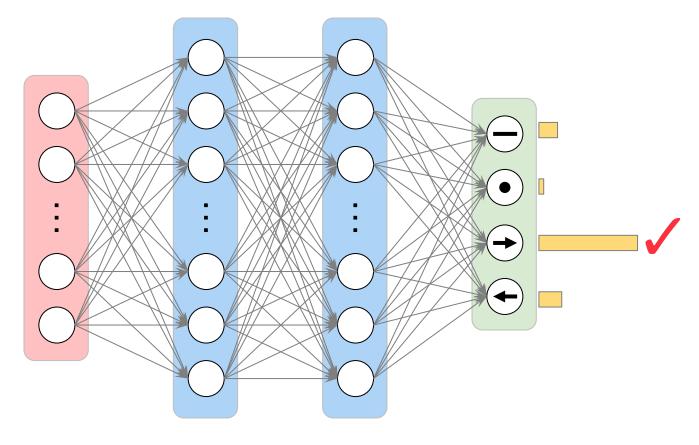
Bellman equation: $Q(s,a) = r + \gamma \max_{a'} Q(s',a')$

Why deep neural network? s is too complex: $256^{84 \times 84 \times 4}$.



Background: Deep Q(uality)-Network (DQN)

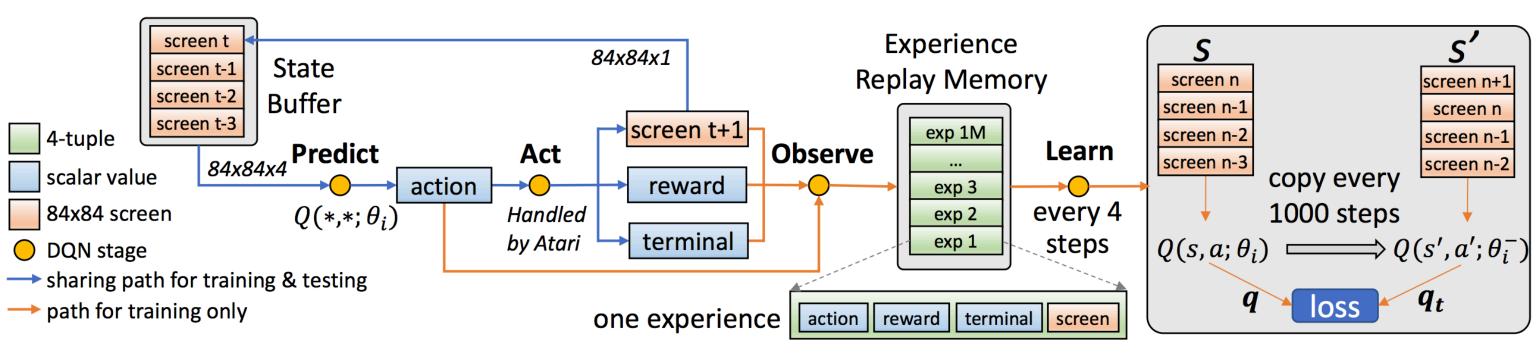
84x84x4



CNN

Objective: maximize the total game reward

Background: Deep Q(uality)-Network (DQN)



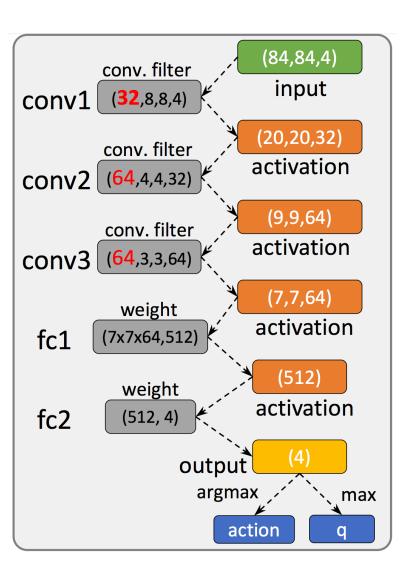
Background: Deep Q(uality)-Network (DQN)

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s')\sim ER} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i) - \frac{1}{2} \right) \right]$$

a random sample from the experience replay memory: $(s, a, r, s') \sim ER$

$$s = \{sn_{t-3}, sn_{t-2}, sn_{t-1}, sn_t\} \Rightarrow DQN(\theta_i) \Rightarrow \begin{cases} output_t = q = \max(q) \\ q = \max(q) \\ a = argn \\ a = argn \\ r = 1 \end{cases}$$
$$r = 1 \qquad \gamma = 0.99$$
$$s' = \{sn_{t-2}, sn_{t-1}, sn_t, sn_{t+1}\} \Rightarrow DQN(\theta_i^-) \Rightarrow \begin{cases} output_{t+1} \\ q_t = r + q_t \\ q_t = r + q_t \\ q_t = 1 + q_t \end{cases}$$

 $loss = (q - q_t)^2 = q_{diff}^2 = (1.95 - 2.4175)^2 = 0.4675^2 = 0.2186$

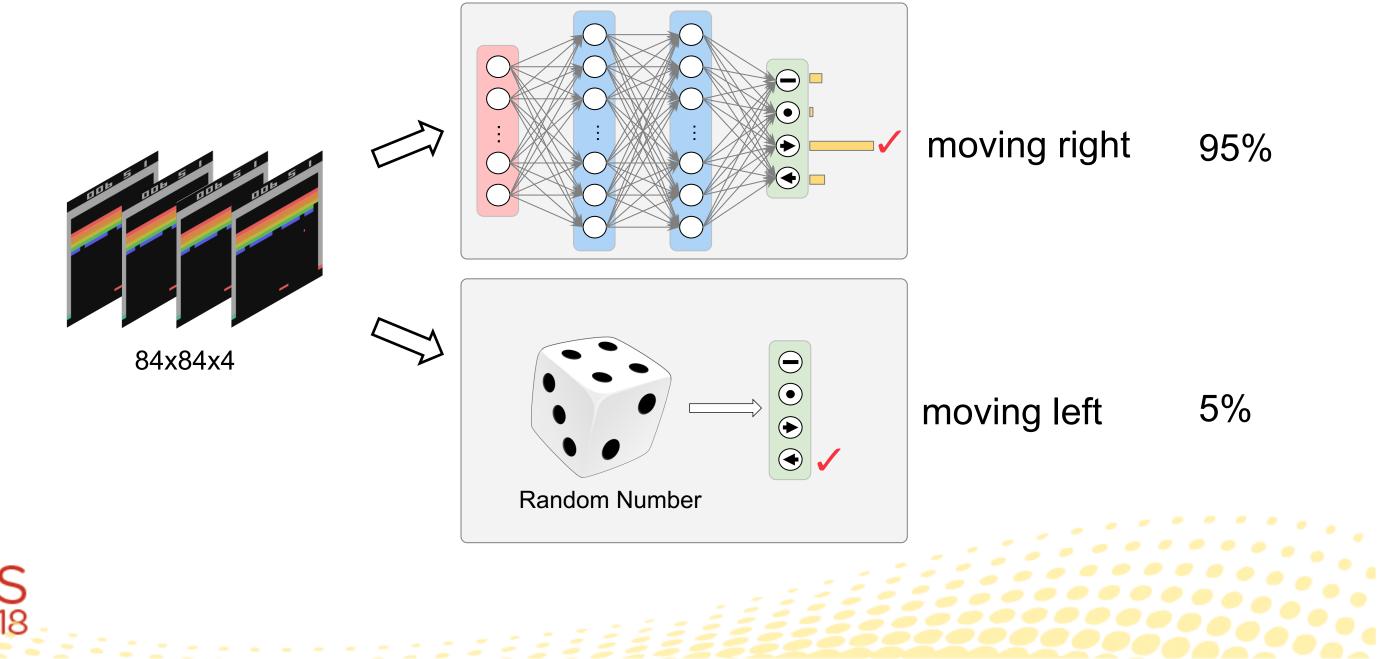


$\left[-\right] - Q(s,a;\theta_i) \right]^2$

 $= \{1.91, 1.72, \mathbf{1}, \mathbf{95}, 1.83\}$ $(output_t) = 1.95$ $\max(output_t) = 2 \ (right)$

 $I_1 = \{1.35, 1.39, 1.32, \mathbf{1}, \mathbf{43}\}$ $\gamma * \max(output_{t+1})$ 0.99 * 1.43 = 2.4175

Background: Exploration and Exploitation dilemma



Challenges

- Long-time blind training process (understand the model)
 - What strategies are really learned?
 - When are those strategy learned?
 - Which part of the neural network learned those strategies?
- Proper choice of different hyper-parameters (improve the model)
 - E.g., the random rate for the tradeoff between exploration and exploitation

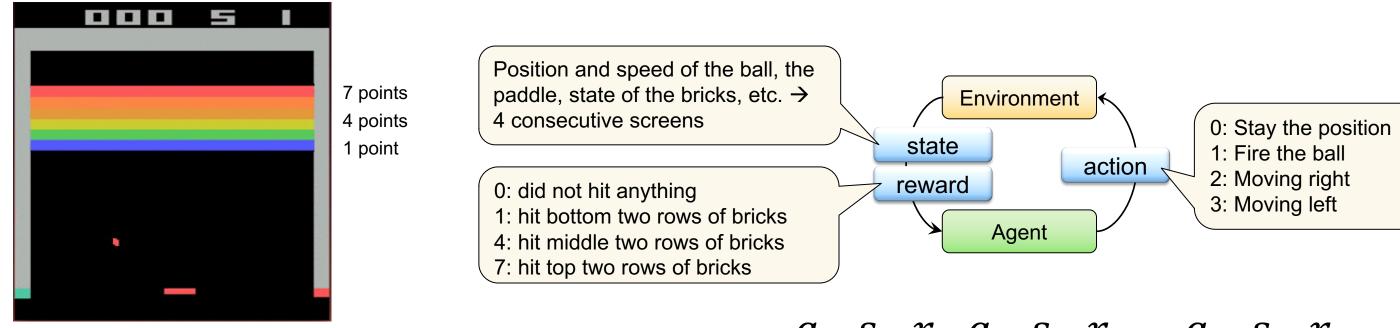
ne model) (ploitation

Contribution: DQNViz

- Visual Analytics System (DQNViz):
 - Effective visual summary
 - Efficient (movement/reward) pattern mining
- Improve DQN training by optimizing the random actions
 - Pattern detection algorithm based on DQNViz

Part I: effective visual summary and efficient pattern mining

DQNViz: The Breakout Game

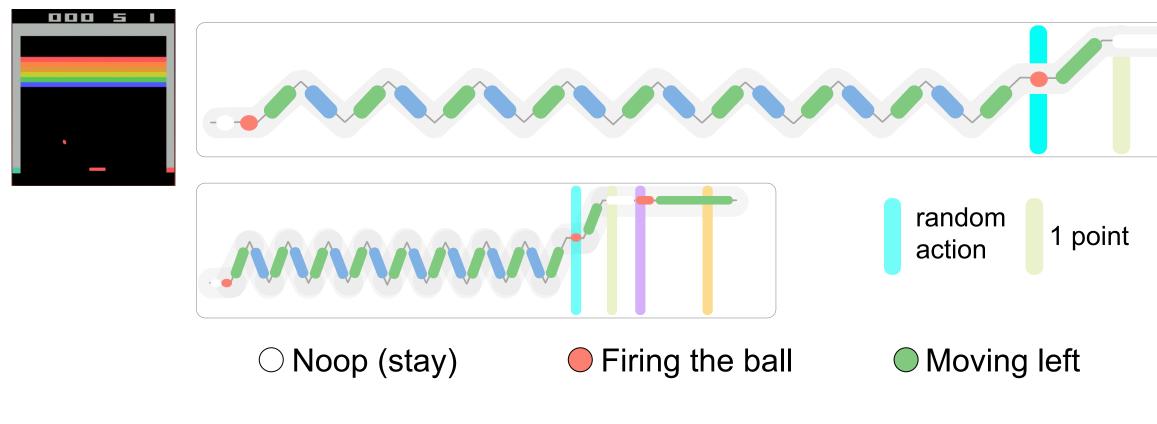


Example Data:

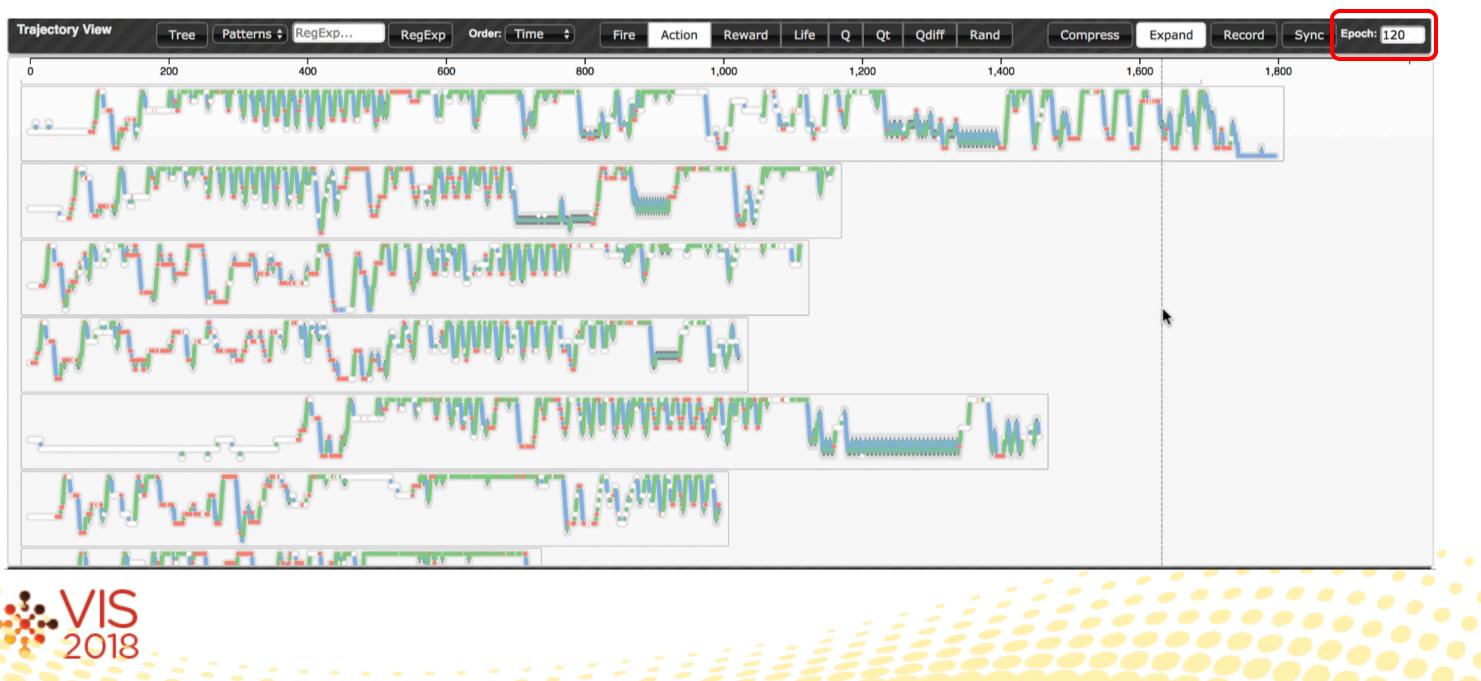
Action sequence: 0000012222333312312311000 State sequence: (84x84x3)(84x84x3)...(84x84x3) Reward sequence: 10000000400000400000700

$a_1, s_1, r_1, a_2, s_2, r_2, \dots a_n, s_n, r_n$

Design 2:

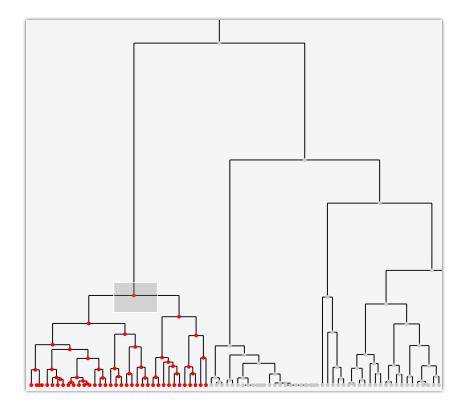


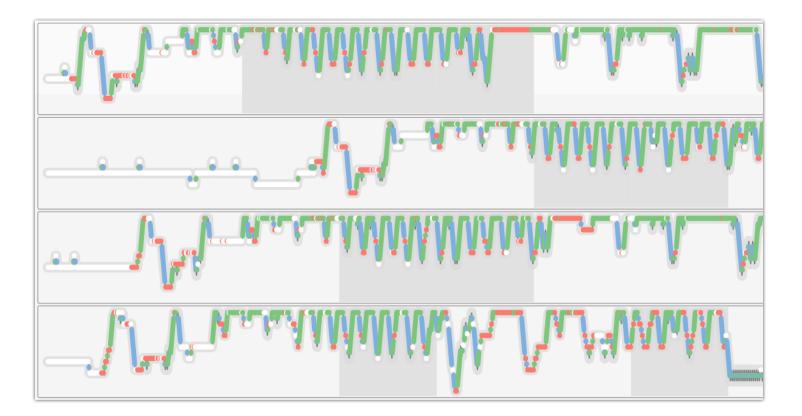
DQNViz: The Episode/Trajectory View



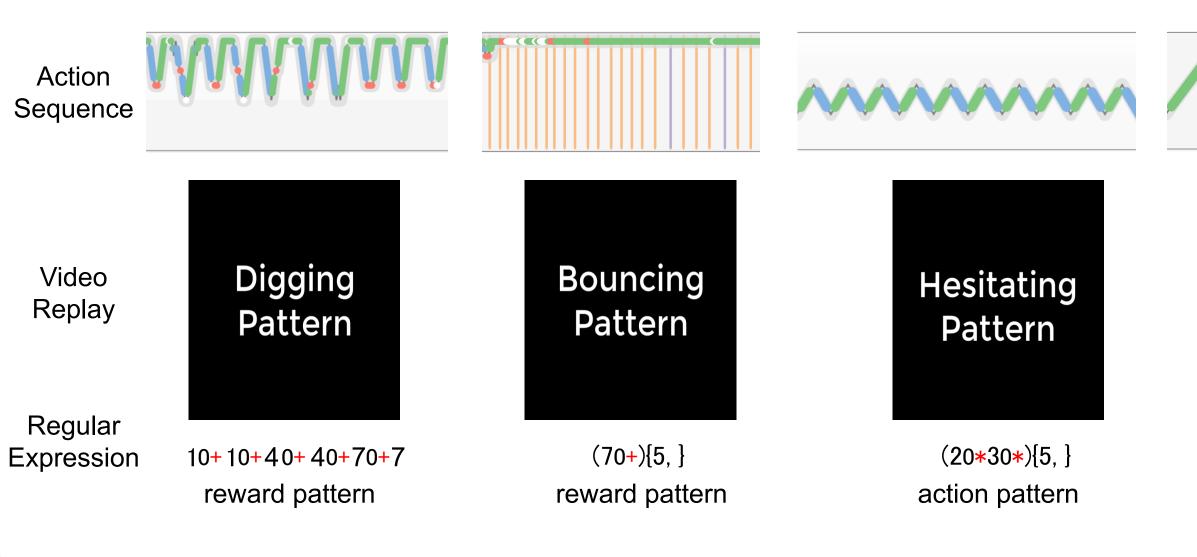
25000 game steps (actions)

DQNViz: Pattern Mining





DQNViz: Pattern Mining



Repeating Pattern

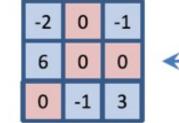
3{30,} action pattern

VIS 2018

Guided Back-propagation

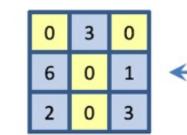
Forward pass $h^{l+1} = \max\{0, h^l\}$

$$\frac{\partial L}{\partial h^l} = [\![h^l > 0]\!] \frac{\partial L}{\partial h^{l+1}} \; \begin{array}{l} \text{Backward pass:} \\ \text{backpropagation} \end{array}$$



 \rightarrow

 $\frac{\partial L}{\partial h^l} = [\![h^{l+1} > 0]\!] \frac{\partial L}{\partial h^{l+1}} \;\; \mbox{Backward pass:} \;\; \mbox{"deconvnet"} \;\;$



 0
 0
 0

 6
 0
 0

 0
 0
 3

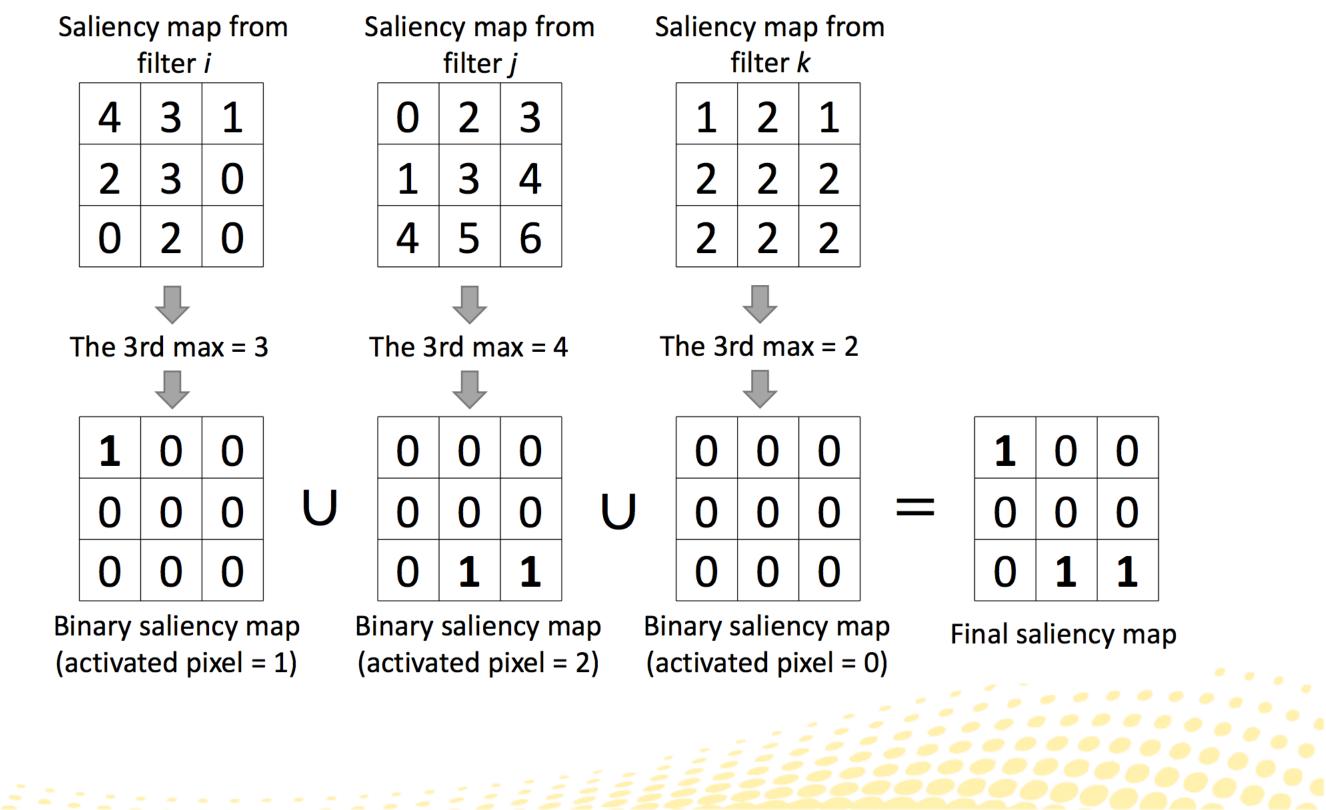
$$\begin{split} \frac{\partial L}{\partial h^l} = \begin{bmatrix} (h^l > 0) \&\& (h^{l+1} > 0) \end{bmatrix} & \text{Backward pass:} \\ \frac{\partial L}{\partial h^{l+1}} & \text{guided} \\ & \text{backpropagation} \end{split}$$

-2
 3
 -1

 6
 -3
 1

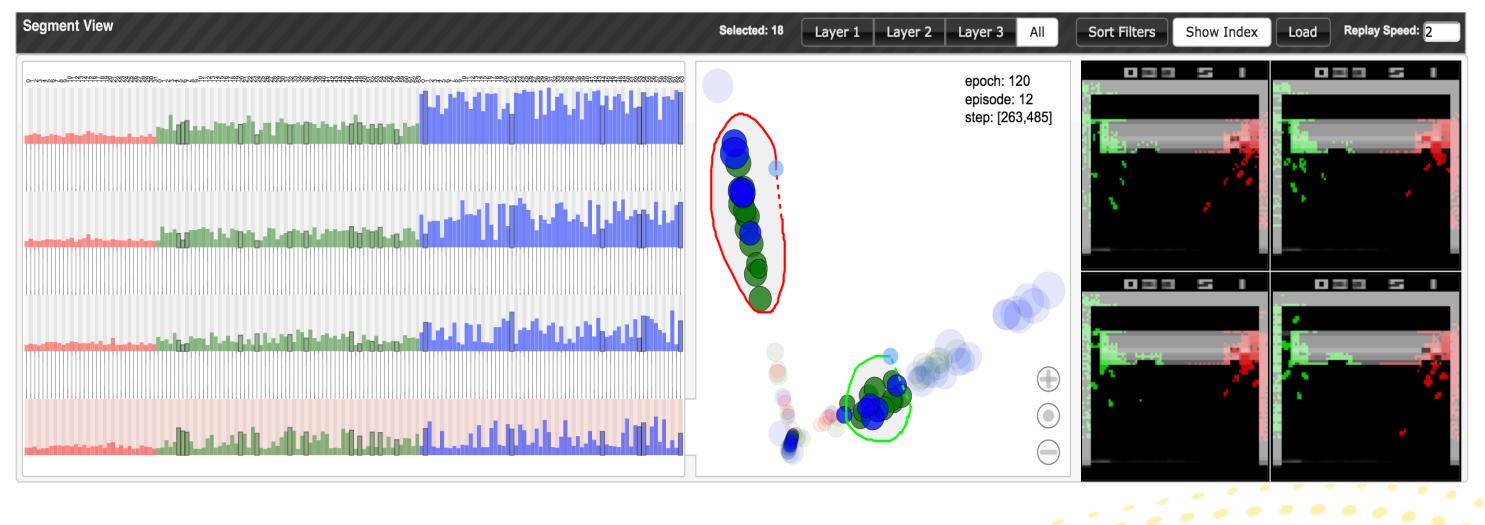
$$\frac{\partial L}{\partial h^{l+1}}$$

 2
 -1
 3
 3

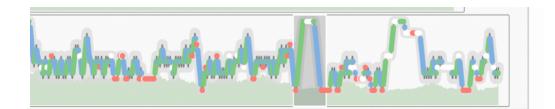


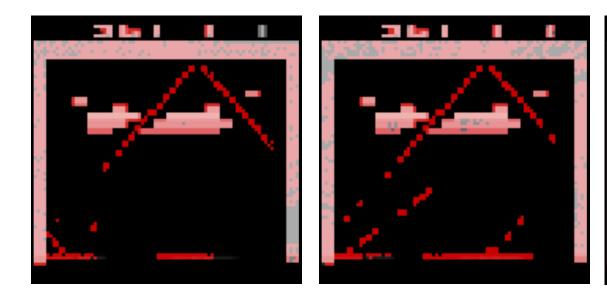
1	0	0
0	0	0
0	1	1

Guided Back-propagation



Guided Back-propagation

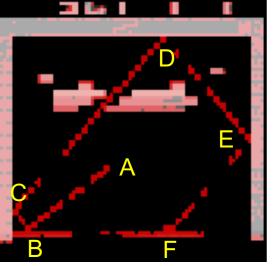




Epoch 0

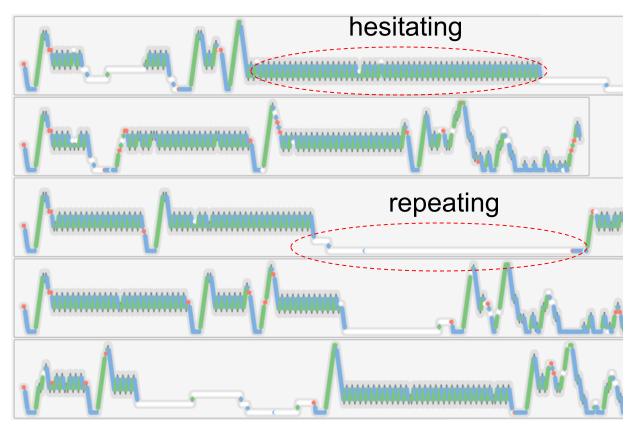
Epoch 10

Epoch 120



Part II: Optimize random actions to improve the DQN model training.

Improve Random Actions



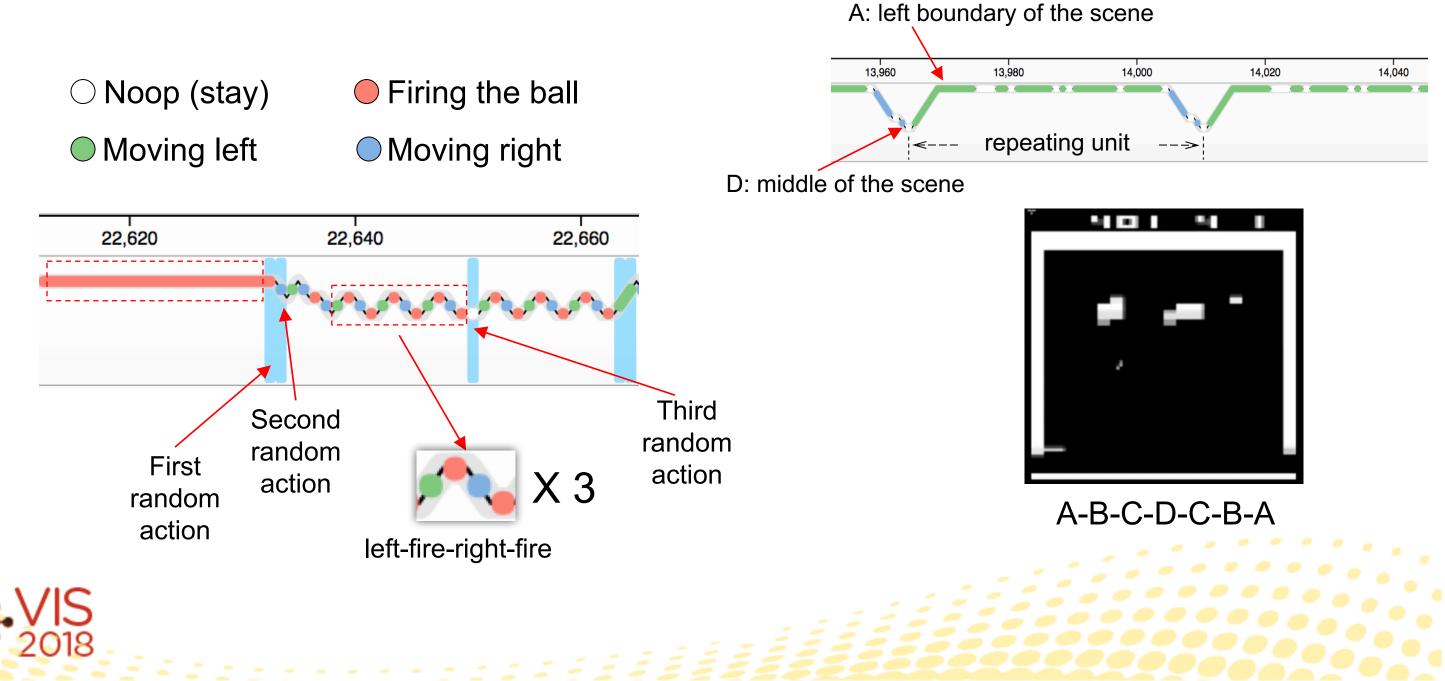
An unsuccessful training due to the hesitating and repeating pattern

Random action terminating the hesitating pattern

> unnecessary random action, which may break an intentional move

Random actions break the agent's intentional move and cause a life-loss.

Improve Random Actions



Quantitative Evaluation

Result of averaging over 10 runs

Algorithm	# of Steps	# of episodes	Total rewards	# or
Random rate 5%	25,000	16.6	4198.6	
Our RegExp Alg.	25,000	11.4	4899.2	
Random rate 2%	25,000	9.9	3780.8	

Conclusion

- We present DQNViz, a visual analytics system that provides effective multi-level visual summaries of the large multi-faceted data generated from DQN trainings.
- Based on our analysis of the training data, we identified typical movement and reward patterns of the agent, and those patterns have helped in controlling the random actions of the DQN model.

Thanks! Questions?

This work was supported in part by US Department of Energy Los Alamos National Laboratory contract 47145, UT-Battelle LLC contract 4000159447, NSF grants IIS-1250752, IIS1065025, and US Department of Energy grants DE-SC0007444, DEDC0012495, program manager Lucy Nowell.

